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Abstract—The reconstruction of embedded element patterns
is analyzed in physically and electrically large aperture arrays
from near-field measurements taken with a source carried by a
drone. This is a very challenging metrology problem, especially
when the arrays are composed of wide-band wide field-of-view
antenna elements in a highly coupled environment, as is the case
for the SKA-low radio telescope stations. We study the use of
both a direct near- to far-field transformation and a model-based
approach to overcome the limitations imposed by this type of
complex electromagnetic structures. Both methods are explained
using a decomposition of the antenna voltages in terms of a
spectrum of incoming plane waves. A numerical example with an
irregular array of 16 log-periodic elements and a hemispherical
path shows their abilities to capture the mutual coupling effects.

Index Terms—mutual coupling, measurements, plane-wave
spectrum, spectral domain

I. INTRODUCTION

The electromagnetic characterization of physically large
structures is a difficult metrological challenge due to the
size limitations imposed by existing test chambers. With the
upcoming and emerging IoT technologies the presence of
electromagnetic transceivers is expected to become ubiquitous
in our societies, and this will translate into a growing demand
for electromagnetic characterization of this type of structures
(e.g. trains, buildings, etc) covered by networks of transceivers.
The problem becomes even harder when the structures are
electrically large and direct far-field measurements are not an
option.

A particular case of interest for the authors of this paper is
the calibration of future broadband radio telescopes composed
of large phased arrays accounting for the effects of mutual
coupling. In the context of the low-frequency SKA telescope
project [1], this requires the characterization of the embedded
element patterns (EEP) of each of the 256 dual-polarized log-
periodic elements in 512 stations (131, 072 separate elements)
from 50 to 350 MHz, i.e. in a 7 : 1 frequency band. Each
station uses an irregular array of elements so in principle every
element stands in a different electromagnetic environment [2].

The expected outcome of accurate calibration is an increase
in dynamic range and imaging fidelity. The main constraints
imposed by these arrays on their characterization are:

• The actual physical size of the arrays (38 m in di-
ameter) and the impact of their local environment on
their performance (e.g. soil conditions) call for an in-situ
characterization system.

• Given that the far-field distance from the 38 m large SKA-
low stations at 350 MHz is approximately 3.5 km, the far-
field parameters such as gain, pattern, etc., require either
a very expensive complex flying system if direct far-field
measurements were to be done or alternatively, near-field
measurements need to be considered.

• The wide field of view of these array antennas (90 degrees
cone centred at zenith) requires a system capable of cov-
ering a large measurement area above the array, imposing
limitations on the number of measurement points that
may be taken by for example a UAV measurement system
with limited flying time.

• The wide frequency band covered by these systems calls
for a wide-band measurement system.

• The high mutual coupling in these arrays means that
spatial features at scales proportional to the full size of
the array may be expected and therefore the measurement
system needs to provide enough resolution.

Traditionally, the calibration of arrays dedicated to radio-
astronomy uses self-calibration. Self-calibration, which uses
astronomical sources, is constrained by the reduced spatial
coverage available and by the strong variations of the sky
source intensities [3]. The proposed alternative consists of
using an artificial source, with known radiation properties,
carried on a UAV flying above the stations [4-8]. In order to
compute the desired far-field parameters from near-field mea-
surements, a mathematical transformation from one surface to
another is required. It is well-known that this transformation,
of arbitrary but monochromatic waves, can be performed
efficiently by expressing the fields as a linear combination of



an elementary wave solution to Maxwell’s equations. Here,
the scalar coefficients of these solutions are usually found
by matching them to the fields on the surface over which
they are known and then by inverting the resulting integral
with the use of mode orthogonality. Solving this expansion
for the fields over a sphere of infinite radius that is centred
on the AUT yields the asymptotic far-field pattern. Those
methods require measurement with a source emitting with a
stable phase in two orthogonal, tangential, polarizations and
are known to be sensitive to the errors arising in the knowledge
of positions and orientation of the source probe. Another class
of methods [8][9][10] uses a simulation-based model of the
current distribution on an a priori known antenna array which
is then modified to match the measured data. In principle, this
can help to reduce the number of required samples and the
measurement time or to improve the resilience of the recon-
structed pattern to probe positioning errors. However, errors
are introduced related to reliability of the simulations due to
uncertainty on the precise antenna geometry. In this paper, we
study two methods based on these two approaches, that is a
direct near- to far-field transformation and a method using a
priori simulation–based knowledge of the embedded element
patterns [8]. Their mathematical formulation is presented and
numerical simulations are used to validate the two approaches.

II. SPECTRAL-DOMAIN FORMULATION OF THE
NEAR-FIELD MEASUREMENT PROBLEM

It is well-known that, by virtue of Lorentz’s reciprocity
theorem, the voltage vn appearing at the output port of a
passive antenna n when illuminated by a plane wave of
incoming direction ûi and of polarization Ẽi can be expressed
by virtually assuming the antenna n as active while all the
other antennas of the array remain passively terminated. This
reads as [11]

vn =
2λ

jη
ZL,n fe,n(kûi) · Ẽi (1)

where k is the wavenumber, λ is the wavelength, η is the
free-space impedance, ZL,n is the input impedance of the
amplifier connected to antenna n. In this equation, the unitless
embedded element pattern (EEP) fe,n has been obtained by
feeding antenna n with a Thevenin equivalent of impedance
ZL,n and of unit voltage source and by using the array center
as a common phase reference for every EEPs [12]. This
definition does not follow the IEEE standards [13] but leads
to a compact expression (1), and fully includes the effects of
mutual coupling.

Let us now consider the more practical case of a drone
carrying a dual-polarized antenna located at rs and hovering
at a near-field distance rs = ||rs|| above the array. The electric
field Es,p radiated by the source probe p and impinging on
antenna n can be decomposed into an angular spectrum of
propagating and evanescent plane waves [15],

Es,p(rn) =
1

4π2

∫∫ ∞
−∞

Ẽs,p(−k) e−jk·(rs−rn) dkxdky (2)

where rn is the position of antenna n, the reference z-axis
is pointing up towards the drone, k = kxx̂ + kyŷ + kz ẑ is
the wavevector with kz2 = k2 − k2x − k2y and the plane-wave
spectrum of the incident field Ẽs,p is related to the “complex”
pattern fs,p of the source probe p, expressed in Volts, by

Ẽs,p(k) =
2π

jkz
fs,p(k) (3)

From there, the voltage vnp induced on antenna n by probe
p can be expressed by summing up the voltage contributions
resulting from each incident plane wave using an analytical
continuation of the relation (1) in which Ẽi and kûi are
replaced by Ẽs,p/(4π

2) and k, respectively. This yields

vnp(rs) =
1

4π2

∫∫ ∞
−∞

ṽnp(k) e
−jk·rs dkxdky (4)

with the plane-wave spectrum of the voltage defined by

ṽnp(k) =
−4πλ
ηkz

ZL,n fe,n(k) · fs,p(−k) (5)

where the phase term ejk·rn is implicitly included in fe,n(k).
Relations (4) and (5) are widely known in antenna theory,
when re-expressed in terms of scattering parameters or fields,
as the transmission integral [14][16][17]. When the drone is
not flying in the reactive field region, it is reasonable to neglect
the multiple scattering between the drone and the array and to
approximate the patterns in (5) as the EEP and the pattern of
the isolated drone.

III. MODEL-BASED APPROACH

An approach, presented in [8], uses full-wave simulations
of the surface current jn induced on the whole array when
antenna n is active and decomposes it into jn =

∑
cmn jmn

where cmn are unknown calibration coefficients weighting the
known part jmn of the current jn flowing on antenna m. Hence,
the EEP n is modelled by

fe,n(k) =

Na∑
m=1

cmn fme,n(k) e
jk·rm (6)

where Na is the number of antenna and the simulated patterns
fme,n(k) of each current jme,n have been computed here using
the center rm of antenna m as a phase reference. Substituting
(6) into (4), (5) and swapping sum and integral leads to

vnp(rs) =

Na∑
m=1

cmn v
m
np(rsm) (7)

where rsm = rs − rm is the vector linking the center of
antenna m to the drone and the voltage vmnp is obtained by
replacing fe,n(k) with fme,n(k) in (5). Assuming that the far-
field pattern fs,p of the drone is known, the voltages vmnp can
be computed numerically. This allows us to stack the Na

unknown coefficients cmn into a vector cn and the L measured
voltages vnp(rs,l) into a vector vn and rewrite (7) as a linear
system of equations Ancn = vn, where An is a L × Na

matrix with its (l,m) entry given by Alm = vmnp(rsm,l). The



calibration coefficients cn are then determined by inverting
An using a least squares solver.

A compact approximation of the voltages vmnp can be
obtained using the stationary phase method [20],[21]. Indeed,
using equation (8) of [22], the spectral integral (4) can be
approximated as:

vmnp(rs) '
j

2π
ṽmnp(kûsm)

e−jkrsm

rsm
k cos(θsm) (8)

where kûsm corresponds to the stationary point, usm is the
direction vector centered on the antenna and pointing to the
probe with elevation angle θsm and rsm = ||rsm|| is the
distance between the drone and the antenna. After including
(5) in (8), one can see that this result leads to the far-field
approximation proposed in [8],

vmnp(rsm) ' 8πλ

jη
ZL,n G(k, rsm)

fe,n(kûsm) · fs,p(−kûsm) (9)

where G(k, rsm) = e−jkrsm/(4πrsm) is the three-
dimensional free-space Green’s function. The error induced
by the asymptotic approximation (9) on the reconstructed EEP
will be illustrated in Section V.

IV. NEAR- TO FAR-FIELD TRANSFORMATION

Typically, the transmission equation (4) is inverted by ex-
ploiting mode orthogonality and it is convenient to express
the surface profile on which the near-field is defined as a
function of two coordinates, x and y, where the coordinates are
plaid, monotonic and equally spaced. For a smooth surface,
such as a hemisphere, defined by a function g(x, y, z) we
can thus define the element of area da and inwardly facing
unit normal which varies over the surface of integration [19].
So taking the “measured” drone data over a sphere we first
interpolate the field points onto a regular plaid, monotonic and
equally spaced spherical grid, add a Cosine2 window function
and transform the data to the far-field. Here we have used
a window function beginning at 60° in elevation out to 90°
(horizontal) to avoid the sudden field truncation that occurs
without window for this electrically small element with strong
field values in the horizontal plane. It is important to note that
within this derivation we have assumed that all measurements
were performed with the same probe in the same orientation
whereby standard probe compensation may be utilised, or with
an infinitesimal Hertzian dipole probe upon probe correction,
may be dispensed with altogether. If this is not the case, then
the probe influence should be included within the forward
equation (4) so that its influence is directly considered within
the equation system inversion.

V. NUMERICAL RESULTS

We analyze here the reconstruction of one EEP at 175 MHz,
i.e. wavelength λ = 1.7 m, of an irregular array of 16 SKA
Log-periodic Antennas (SKALA2 [23],see Fig. 1) lying on top
of an infinite ground plane, as depicted in Fig. 2. The antenna
under consideration lies close to the array center. As sketched

in Fig. 2, the drone starts from the top of an hemisphere of
15 m radius, i.e. roughly 9λ, then follows rings of constant
elevation and gradually goes down until it reaches the ground.
With this trajectory, the hemisphere is sampled uniformly in
elevation and azimuth every 2° and the drone stands well in
the array near-field since the far-field distance is 75 m at 175
MHz. It is also important to note that the drone hovers at an
intermediate-field distance of every antenna since their far-field
distance, including the antenna image, is 20 m.

Fig. 1. Second version of the SKA Log-periodic Antenna (SKALA2) [23]

Fig. 2. Array layout and example of the near-field sampling path

The components of the isolated element pattern and the
actual EEP are depicted alongside in Fig 3. One can observe
ripples of around 5 dB in the EEP caused by the mutual
coupling between antennas. In the following figures, we will
show the absolute error on the reconstructed EEP obtained as
follows:

ε(dB) = 20 log10 |E − Ê| (10)

where E and Ê are, respectively, the x-y component of the
exact far field and the field reconstructed using either the near-
to far-field transformation or the model-based approach.
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Fig. 3. (a) x-component of the isolated element pattern, (b) x-component of
the EEP, (c) y-component of the isolated element pattern, (d) y-component of
the EEP.

Fig. 4 shows the error in the reconstructed far-field pattern
using the model-based approach of Section III. The error level
is around -20 dB at zenith, this may come from the far field
approximation done in (9) since, as mentioned previously, the
drone stands also in the near field of every antenna. Fig. 5
shows the corresponding reconstruction error based on the
near- to far-field transformation described in Section IV. In this
case the peak error in the 90° cone about zenith is -45 dB with
around -55 dB in the central region. The level of agreement
is demonstrated by comparing the contour plots for both the
simulated and transformed EEPs in Fig. 6.

(a)

(b)

Fig. 4. x- (a) and y- (b) components of the error, model-based approach

VI. CONCLUSION

Two plane wave spectrum methods for the electromagnetic
characterisation of physically and electrically large structures
have been analyzed with results shown for a specific radio
astronomy application. The transformation approach offers an
accurate solution but requires that the amplitude and phase of
the signal from the drone be measured. A continuation of this
work will study the impact of sub-Nyquist sampling and drone
positional errors (eg. use of irregular measurement grids) on
the performance of both methods.

The team is also now preparing for the further development
of the methods and a measurement campaign with a 64-
element array of SKALA4 antennas at the Mullard Radio
Astronomy Observatory in Cambridge, UK.



(a)

(b)

Fig. 5. x- (a) and y- (b) component of the error, transformation approach

(a)

(b)

Fig. 6. Contour plot of the x- (a) and y- (b) components of the error,
transformation approach
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